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Abstract

Network function virtualization (NFV) and software-defined networking (SDN) are

two recent networking paradigms that strive to increase manageability, scalability, pro-

grammability and dynamism. The former decouples network functions and hosting devices,

while the latter decouples the data and control planes. As more and more service providers

adopt these new paradigms, there is a growing need to address multi-failure conditions,

particularly those arising from large-scale disaster events. Overall, addressing the virtual

network function (VNF) placement and routing problem is crucial to deploy NFV surviv-

ability. In particular, many studies have inspected non-survivable VNF provisioning, however

no known work have proposed survivable/resilient solutions for multi-failure scenarios.

In light of the above, this work proposes and deploys a survivable multi-objective

provisioning solution for NFV infrastructures. Overall, this study initially proposes multi-

objective solutions to efficiently solve the VNF mapping/placement and routing problem. In

particular, a integer linear programming (ILP) optimization and a greedy heuristic meth-

ods try to maximize the requests acceptance rate while minimizing costs and implementing

traffic engineering (TE) load-balancing. Next, these schemes are expanded to perform “risk-

aware” virtual function mapping and traffic routing in order to improve the reliability of user

vi
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services. Furthermore, additionally to the ILP optimization and greedy heuristic schemes,

a metaheuristic genetic algorithm (GA) is also introduced, which is more suitable for large-

scale networks. Overall, these solutions are then tested in idealistic and realistic stressor

scenarios in order to evaluate their performance, accuracy and reliability.

vii



www.manaraa.com

Chapter 1 Introduction

This dissertation presents a multi-objective resources provisioning in network func-

tion virtualization infrastructures, which focuses on virtual network function placement and

routing with a focus on survivability under large-scale disaster conditions. This initial chap-

ter starts by introducing some of the key developments in this space and then presents the

key motivations for the work. The main contributions of the research are then presented in

a high-level manner along with an overview of the remainder of the thesis.

1.1 Background Overview

The past three decades have seen rapid technological achievements in the networking

and information technology (IT) space. These developments have occurred not only in

computational power, but also in terms of data rate transmission and storage as well. In

turn, these advances have led to much lower acquisition, deployment and maintenance costs.

These improvements have led to the adoption of large-scale datacenters interconnection,

and the broader emergence of cloud-computing paradigms. However, as these trends have

unfolded, a host of management and orchestration ossification challenges have also arisen.

Now traditional physical network devices, e.g., such as switches and routers, have

operated with their own specialized internal and standalone control plane configuration sys-

1
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tems; i.e., vendor-proprietary. These setups led to increase management complexity due to

individual configuration requirements and a high degree of vendor dependency. As a result,

many carriers began to find it very difficult to build and offer cost-effective servers using

legacy devices. In response, various organizations initiated efforts to simplify network node

designs by decoupling the control and data planes, i.e., software-defined networking (SDN).

The main premise behind SDN outsource the control plane to a concentrator, namely SDN

controller. The controller is responsible for receiving the flow rules via northbound interface

and pushing such rules into the proper network nodes via southbound interface. Overall,

SDN strives to reduce network ossification as well as reducing operational and capital ex-

penses (OpEx and CapEx) by reducing management complexity and improving dynamism.

Additionally, the adoption of SDN nodes leverages vendor-independency.

Now, although decoupling the control and data planes delivers the aforementioned

advantages, traditional network services deployment still remains a complex and expensive

under-taking. Moreover there is a high degree of vendor-dependency as traditional network

services are managed and deployed by embedded vendor-proprietary systems. Therefore, in

order to reduce network services management complexity and to improve (re)deployment

capabilities, network function virtualization (NFV) paradigm has been evolved to support

deployment of network functions on commercial-of-the-shelf (COTS) equipment as a software

instances.

2
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In general, typical client networking services can include a range of offerings such

as firewalls, deep packet inspection (DPI) engines, intrusion detection/prevention systems,

network address translation (NAT) boxes, etc. Now in terms of NFV, many of these services

are typically composed of multiple virtual network functions (VNF). Specifically VNF can

be deployed/implemented across multiple datacenter sites, and a datacenter site can host

multiple VNFs. Additionally, many client services may impose a strict interdependent rela-

tionship between multiple atomic VNFs, i.e., service function chaining (SFC). For example,

a firewall service can be comprised of two VNFs to filter packets and balance traffic (load

balancer). Fig. Figure 1.1 also illustrates a generic set of three SFC demands, i.e., SFC1

(red) consists of VNFs 1 and 3, SFC2 consists of VNFs 1, 2 and 3 and SFC3 consists of VNFs

2 and 3. In an event of a failure of Datacenter D, services demanding VNF1 are steered to

Datacenter D, which deploys a backup instance of VNF1.

Although it is not mandatory, in general most deployments use an embedded vir-

tual network as the virtual network function infrastructure (VNFI) owing the advantages

offered by this approach. In particular, it is possible to map and deploy VNFs in a substrate

infrastructure comprised of nodes that support the VNF paradigm. However a virtual net-

work guarantees a more flexible and manageable infrastructure. Specifically, Fig. Figure 1.2

shows a VNFI comprised of a virtual network embedded into a substrate/physical network,

where the substrate nodes are COTS devices hosting virtual nodes that instantiate the VNFs

illustrated in the NFV layer.

3
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Figure 1.1: Service Function Chaining.

However as service providers show increasing interest in NFV, many further questions

and challenges are starting to arise, i.e., such as management and orchestration, security

and privacy, performance, and function placement, among others. In particular, the latter

placement problem must consider a multiple set of client requests, where each request is

comprised of a set of VNFs, a source, a destination and a minimum bandwidth rate. Hence,

the service providers must efficiently ”place” these VNFs across their datacenters to reduce

deployment and routing costs, and also increase service performance and reliability.

Now given the immense interest and focus on network virtualization, the VNF place-

ment problem has been well-studied in recent years. Specifically, researchers have proposed

a host of schemes to minimize costs, increase revenues or increase reliability [BA01]-[DO02].

Additional studies have also looked at survivable VNF placement using backup VNF re-

4
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Figure 1.2: Network Function Virtualization overview.

source provisioning [MB01][ZY01][WD01]. In general, these studies have used a wide range

of techniques, including optimization, graph-theoretic heuristics, meta-heuristics, and vari-

ous approximation strategies, see [ZY01] for details.

1.2 Motivations

The current body of research work on virtual network functions placement and/or

routing generally focuses on minimizing cost and improving performance. Namely, incoming

5
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requests are provisioned based upon the current available resource levels in the network.

However, as more providers start to deploy NFV-based services, related survivability is-

sues are becoming increasingly important. Now traditionally, network operators have relied

upon dedicated, expensive hardware systems to deliver a ”carrier-grade” reliability for their

high-end clients. Clearly, achieving similar performance over commodity-based servers (im-

plementing NFV) is a much more challenging task as such systems have generally lower

reliability levels. Hence operators have to derive effective strategies to achieve acceptable

survivability support in emerging NFV service setups.

Although some efforts have addressed NFV survivability topics, these solutions mostly

focus on single isolated system failures. As a result, the further impact of large-scale disaster

events (multiple failures) on NFV-based services becomes a concern. These occurrences can

include events such as natural disasters, malicious attacks, and cascading power outages.

Now the only known work on ”risk-aware” disaster-based NFV provisioning is pre-

sented in [JF01], which outlines the probabilistic availability of a path based on the actual

temporal availability of physical resources. Indeed there is a growing need to build more sys-

tematic multi-objective solutions to efficiently provision resources and directly incorporate

the randomized nature of disaster events into the NFV placement process., i.e., ”risk-aware”

VNF placement on multi-failure scenarios. This request forms the key motivation for this

dissertation research.

6
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1.3 Problem Statement

This dissertation addresses the above challenges and develops a novel set of multi-

objective resources provisioning in NFV infrastructures. Specifically, these techniques im-

plement placement and routing strategies and also incorporate stochastic failure models to

lower failure risk and improve VNF reliability. In addition, many existing VNF placement

and/or routing schemes assume abundant datacenter resources to satisfy all client demands,

therefore they only focus on minimizing cost, i.e., unconstrained resource levels. However,

this assumption may not hold in heavy demand or in post-failure scenarios where resource

scarcity will be high. As a result, this dissertation also looks at constrained VNF placement

to minimize costs and maximize the overall VNF placement.

1.4 Proposed Work and Contributions

This dissertation studies the VNF placement problem within the context of disas-

ter recovery, i.e., large failure events causing multiple correlated system failures. The key

contributions of this effort include the following:

1) New integer linear programming (ILP) optimization models and improved greedy heuris-

tics to minimize deployment and routing costs and maximizing the number of satisfied

VNFs.

2) New ”risk-aware” probabilistic VNF placement problem along with associated opti-

mization model and greedy heuristics for risk mitigation.

7
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3) Novel meta-heuristic strategies for VNF placement based upon genetic algorithms,

including variants for regular cost minimization and risk mitigation.

The remainder of this dissertation is organized as follows. First Chapter 2 presents

a detailed survey of existing VNFs placement techniques as well as some rated survivability

NFV schemes. Next Chapter 3 details some new joint routing and placement schemes for

NFV to conceptually maximize the number of satisfied requests and also reduce costs. Chap-

ter 4 then extends this work by introducing novel ”risk-aware” routing and VNF placement

schemes assuming probabilistic multi-failure models, i.e., including ILP-based and greedy

heuristic methods. Finally, Chapter 5 presents further genetic algorithm methodology for

”risk-aware” provisioning, focusing on large-scale networks. Conclusions and directions for

future work are then presented in Chapter 6 to conclude this dissertation.

8



www.manaraa.com

Chapter 2 Background and Related Work

The overall area of NFV has received notable attention in recent years, specifically

due to the contemporary nature of this paradigm and its various challenges. Along these

lines, this chapter overviews some of the latest developments in this field and then introduces

the VNF placement and routing problem. A range of associated provisioning schemes are

then surveyed, including survivability-based methods. Open research challenges are then

outlined to motivate the thesis research.

2.1 Network Function Virtualization Overview

The European Telecommunications Standards Institute (ETSI) selected seven major

telecom operators to form the Industry Specification Group for NFV (ISG-NFV) in 2012.

This community now exceeds 300 companies and published its initial specifications between

late 2013 and 2014, termed as Release 1 [ETSI01]. Now given the relatively high complexity

of the NFV paradigm, the ISG-NFV also defined several working groups (WG) to handle

specific NFV specification areas:

• Interfaces and Architecture (IFA): Specifies the overall NFV architecture and its inter-

facing requirements to support interoperability

9
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• Evolution and Ecosystem (EVE): Specifies the interface between NFV and other stan-

dards or technologies that may relate to NFV. As an example, this WG has defined

various NFV-SDN interaction requirements and use cases.

• Solutions (SOL): Focuses on specifying and developing protocols to support NFV in-

teroperability.

• Reliability (REL): Focuses on improving the reliability and availability of NFV systems.

• Security (SEC): Addresses security-related concerns for NFV, e.g., such as southbound,

northbound and deployment security.

• Testing and Implementation (TST): Focuses on deploying NFV testcases in order to

test and demonstrate the capabilities of this technology. Hence this WG is crucial for

driving NFV adoption by operators.

Therefore it is critical to identify specific NFV topics being addressed by the WGs and

identify the ones that are of higher interest to users [ETSI01]. Accordingly, those topics are

briefly detailed here as:

• Architecture: Analyze and proposes improvements to the NFV architecture

• MANO: Focus on physical and virtual resources requirements and management, net-

work functions correlation, lifecycle control, policies implementation and management

• Use Cases: Develop state-of-the-art NFV deployment cases

• Placement: Address the VNF location problem by analyzing and/or proposing novel

VNF placement models

10
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• Security: Address NFV-related security concerns and solutions

• Performance: Correlate efforts to target NFV performance evaluation

Now, many studies have addressed a wide range of NFV-related topics. For example,

[BH01] surveys the state-of-the-art in NFV technologies, detailing its requirements, archi-

tectural framework, use cases, challenges and potential solutions strategies. Specifically,

this work addresses performance issues, i.e., throughput limitation and latency, that may

arise due to the instantiation of services in a software. In addition, service function chain-

ing (SFC) concerns are also addressed the possibility of service failure from a single VNF

outage or misplacement. Finally, this study also analyses security concerns involving the

interface between the NFV and network function virtualization infrastructure (NFVI) lay-

ers, and highlights the impact of VNF mapping with regards to performance, security and

availability.

As mentioned in Section 1.1, evene though the SDN and NFV paradigms are not

interdependent, their combination is still very beneficial. As a result, some efforts have also

addressed this integration, i.e., termed as software defined network function virtualization

(SDNFV). For example, [YL01] details the close association between these two methodologies

and highlights VNF placement traffic steering considerations. Potential future applications

of SDNFV are also detailed.

Finally, a broader inspection of the NFV paradigm is also presented in [RM01].

Specifically this work details the NFV architecture and discusses a range of NFV topics,

11
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i.e., MANO, energy efficiency, performance, resource allocation, security, privacy and trust.

The importance of VNF placement here is also stressed.

2.2 VNF Placement

In general, VNF placement has a major impact on many of the detailed NFV topic

areas, e.g., such as performance, security and management. As a result, various research

studies have defined addressed this particular problem in a detailed manner. In particular,

the service provider’s network, whether physical or virtual, is typically modeled as a graph

with a set of nodes and links. This infrastructure yields incoming client requests which are

composed of source and destination nodes, a set of interconnecting VNFs and a requisite

bandwidth requests. Furthermore, each requested VNF has a set of minimum physical re-

quirements, e.g., processor, memory, storage, etc. Accordingly, the VNF placement and/or

routing algorithms try to provision each request by assigning a path across a set of datacen-

ters that instantiate (support) the desired set of VNFs. Overall, Figure 2.1 shows a VNF

placement example for 2 service requests. Here, the virtual infrastructure layer features a

virtual network with 10 nodes and 15 links. The values inside the nodes correspond to the

amount of available physical datacenter resources, whereas the values next to the associ-

ated link correspond to the link capacity. Now, Request A requires a path from node 1 to

node 8 crossing over datacenters supporting functions a, b, c with a minimum bandwidth

capacity of 50 units. Similarly, Request B demands a path from node 5 to node 6 crossing

over datacenters instantiating functions d, e, f with minimum bandwidth capacity of 100

12



www.manaraa.com

units. Also, each function here requires a certain amount of datacenter resources, as denoted

by the number next to each requested VNF. Furthermore the grey dashed lines illustrate

some potential VNF mappings, whereas the blue and green dashed lines illustrate potential

connection path satisfying requests A and B, respectively.
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Figure 2.1: VNF placement overview

Overall researchers have studied a range of algorithmic schemes for VNF placement

and/or routing. Most of these methods try to achieve a given objective, e.g., such as mini-

mize certain quantities (such as resource usage, physical cost, link load, redeployment delay),

13
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maximize other quantities (such as resource, carried load, energy efficiency, and availabil-

ity/reliability), or achieve a tradeoff. Accordinglyl, Figure 2.2 presents a high-level taxonomy

of some of the existing VNF placement and/or routing schemes. Those solutions are now

surveyed further.

Non-Survivable VNF Placement Survivable VNF Placement

Risk-Unaware Risk-Aware

Single Failure

• No placement, re-
routing only:
[AM01]

• Placement only:
[BH01]

• Link-disjoint primary 
and protection paths: 
[MB01], [ZY01], [WD01]

Multi-failure: 
• No known studies

Single Failure

• Probabilistic a-priori: 

[MC01], [JF01], [HY04], 
[GS02], [FG01]

Multi-failure
• No known studies

• Optimization-based: 
[SM01], [RC01], [BA01], [MX01],
[HM01], [DO02]

• Greedy heuristics: 
[MX01], [DO02]

• Heuristic: 
[MB03] (heuristic),
[BA01] (math-heuristic), 
[MB02] (genetic algorithm)

Figure 2.2: A summary of VNF placement and survivability efforts

Foremost, a wide range of studies have looked at VNF placement under regular, i.e.,

working network conditions, i.e., [SM01], [HM01], [MB03], [BA01], [RC01], [MX01], [MB02],

[JC01] and [DO02]. For example, [SM01] presents one of the first studies on VNF placement

optimization to maximize the remaining traffic data rate, minimize the number of used

network nodes and minimize the total latency over all paths. Moreover, the proposed model

14
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considers some specific constraints, e.g., , an upper-bound number of instances of each VNF,

a maximum tolerable latency between endpoints, a pre-defined requests acceptance rate per

instance, etc. The solution also develops a chain classifier module to classify flows according

to pre-defined chains and steer traffic according to SFC demands. Furthermore a mixed

integer quadratically constrained program (MIQCP) scheme is also used to provision a VNF

chain in the first stage and embed it into the underlying topology in the second stage. This

two-stage approach is necessary due to the linear nature of the adopted scheme. Moreover,

the objective function tries to either maximize the transmission data rate, minimize the

overall number of assigned nodes or minimize latency. Nevertheless, this scheme does not

combine any of these three provisioning objectives.

Meanwhile [RC01] proposes two ILP-based optimization schemes to minimize VNF

mapping cost, i.e., uncapacitated and capacited. Specifically, mapping cost is defined as the

sum of the setup cost of each function at a specific node and the distance between the nodes.

Now whereas the uncapacited scheme assumes that a datacenter has unlimited instance

constraints while the capacited scheme, akin to [SM01], assumes a finite and pre-determined

number of instances of a VNF. Overall, this solution addresses two key conccerns, i.e., facility

location problem and generalized assignment problem (GAP), governed by the neighboring

distance and setup costs, respectively. However, multiple approximation techniques are

implemented and no routing costs, bandwidth capacity constraints nor traffic engineering

constraints are taken into account. The proposed ILP schemes are compared versus a greedy

15
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heuristic algorithm based on performance ratio. The performance ratio is defined by the ratio

between the mapping cost and the number of flows supported by a function instance. Results

indicate that the former reduces this ratio by at least 60%. Also the authors show that the

performance rate significantly increases when function capacity is reduced, showing that as

more allocations are necessary, more accurately the ILP scheme has performed. Thus, the

authors show that although the location problem is NP-hard, ILP schemes perform better

than greedy heuristics as complexity increases.

Furthermore [MB03] presents a heuristic scheme to compose and embed VNF chains

(SFCs) and minimize bandwidth utilization in a reasonable amount of time, termed as Co-

ordVNF. Specifically, the solution defines a maximum path length parameter to limit the

distance between a mapped node and the corresponding substrate nodes, i.e., and achieve

some level of flexibility. The CoordVNF scheme is then compared to the MIQCP scheme

from [SM01] for maximum path length parameters ranging from 1-5 hops. Overall results

show that this method gives significantly faster embedding and service chaining, i.e., on the

order of milliseconds vesus order of seconds. This joint performance gain occurs due to the

heuristic nature of the scheme, which jointly performs both chaining and embedding in a

single stage, i.e., whereas the MIQCP algorithm uses a two-stage approach.

Additionally, [BA01] introduces a mixed integer linear programming (MILP) scheme

to optimally place VNF datacenters over an NFVI and optimally assign requested functions

(to VNF datacenters) to build the chains. Specifically, the authors try minimize resources
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usage (node and link) and use two different objective functions. Namely, the first technique,

termed as TE, defines two separate objective functions, i.e., one to minimize node load and

the otther to minimize link load. Meanwhile, the second technique minimizes both node and

link loads in the same objective function, termed as TE-NFV.. Additionally, the authors also

extend their work in [VM01] and build a heuristic algorithm to handle larger, more realistic

operational scenarios. Overall, results show that the TE-NFV scheme reduces the number

of VNFs instantiated as compared to the single TE minimization scheme. In addition, VNF

setup cost is also 70% lower here. Now these results indicate that the TE scheme gives

slightly lower link utilization (about 5% less). However placing VNFs traffic engineering

yields substantial setup cost while delay remains the same for both.

Now some studies have also addressed VNF placement for specific solutions, i.e.,

deploying VNFs to implement a single and specific service. For example [MX01] focuses on

heterogeneous NFVI Layer 1 networks and proposes a scheme to minimize NF placement

cost in hybrid networks composed of optical and electronic network elements. The goal

here is to reduce the optical-to-electronic-to-optical (O-E-O) and electronic-to-optical-to-

electronic (EOE) conversion delay costs by mapping VNFs from the same chain to a reduced

number of datacenters. The problem is modeled as a binary integer linear programming

(BIP) optimization scheme, and a greedy heuristic scheme is also presented to improve

applicability (scalability) in more complex scenarios. These two methods are compared with

a greedy first-hit heuristic scheme, and results confirm that both of the proposed schemes
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drastically reduce the number of required E-O-E and O-E-O conversions (as well as the

number of datacenters).

Akin to the above, [MB02] also presents a placement heuristic to minimize the de-

ployment cost of a single service in a SDN network, i.e., deep packet inspection (DPI) service.

Overall, this effort tries to minimize the number of inspection engines deployed and their

loads, as well as improve overall efficiency (traffic inspection). Accordingly, a metaheuristic

genetic algorithm (GA) solution is proposed owing to its improved scalability versus linear

solvers. This algorithm uses evolutionary strategies based upon previous results to narrow

down the search space, and the authors implement all critical GA steps here, i.e., including

random initial population, selection, crossover and mutation. Moreover a greedy heuristic

algorithm is also devised to compute a constrained shortest path (SP) between the two end-

points. Furthermore, several different scenarios are evaluated for two key parameters, i.e.,

cost of a DPI engine and maximum bandwidth usage per link. Overall results show a clear

tradeoff between the number of DPI engines and the network load, e.g., the overall deploy-

ment cost can be reduced by up to 58% for a lower DPI cost. Finally Gebert et al [SG01]

also present a heuristic algorithm to efficiently place VNFs in a service provider NFVI and

optimize cellular coverage for large events.

2.3 NFV Survivability

Overall most VNF placement schemes have focused on objectives such as performance

improvement, cost reduction, energy efficiency, traffic engineering, etc. However, VNF sur-
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vivability (reliability) is now becoming a major concern given the critical nature of many

services. In many cases service providers will still be expected to provide “nines” reliability,

regardless of if services are being provisioned over commodity systems or legacy carrier-grade

platforms.

Now [BH01] presents a high-level look at VNF resiliency and outlines a range of re-

quirements, i.e., failure management, state management/synchronization, VNF migration,

and handling larger correlated failures. However this work does not present any specific

solution strategies. Instead, only a handful of efforts have addressed survivable VNF place-

ment to improve the resiliency of services (mostly for single failures). Specifically, these

methodologies have pursued a range of routing, redeployment and pre-provisioned (protec-

tion) schemes. A review of the existing VNF survivable schemes is now presented, see also

Figure 2.2.

2.3.1 Single Failure Scenarios

Most VNF mapping studies have only addressed survivability concerns for isolated

single node and link failures. For example, [AM01] considers the case of a single VNF

failure, i.e., datacenter outage, causing a service chain interruption. A extended orchestration

architecture is then proposed to dynamically redefine flows and steer (re-route) traffic to

establish new paths and reduce downtime. Nevertheless, VNF placement is not considered

here. Further considerations for resource limitations and bandwidth constraints are also

lacking. As such, this effort only focuses on reactive disaster recovery.
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Meanwhile [MB01] proposes another resilient SFC allocation scheme. First, a greedy

heuristic algorithm is designed to map the virtual network functions forwarding graphs (VNF-

FGs) for service chaining requests, thereby yielding resource allocation constraints and VNFs

interdependence. Two different protection strategies are then defined, ie., link resilience and

VNF resilience. The former implements link-disjoint path protection between all neighboring

datacenters, whereas the latter defines alternate datacenters for each NF, i.e., more than

one NF per datacenter allowed. A complex (time-consuming) back-tracking scheme is then

presented to allocate resources. Specifically, the solution randomly choses a datacenter that

is able to instantiate the first NF belonging to a service chain, and then performs a breadth

search to find a datacenter capable of instantiating the next function. Resources are then

allocated at these datacenters. However, if a datacenter cannot be assigned for a specific

NF (according to the service chain specifications), all resources are deallocated and another

search is initiated. However, runtime performance is only evaluated for a small topology and

a small number of requests, resulting in very few backtracking searches. Furthermore, no

resiliency results are presented either.

Meanwhile, the work in [ZY01] presents a joint topology design and mapping (JTDM)

solution, which uses a heuristic scheme termed as closed-loop with critical mapping feedback.

This solution builds the network topology (NFVI) and then maps the VNFs in order to

minimize the total bandwidth cost (TBC). In particular, TBC minimization is achieved by

performing function combination, i.e., deploying two or more NFs in the same datacenter to
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reduce bandwidth load. Furthermore, this solution also incorporates reliability concerns by

computing node- and link-disjoint protection service chains. In particular, two protection

schemes are considered here, i.e., dedicated and shared [HL01]. Results show a clear tradeoff

between reliability and efficiency as expected, with dedicated protection giving higher (lower)

reliability (efficiency) than shared protection.

Furthermore, the work in [MC01] takes a slightly different approach and assumes the

availability of a-priori probabilistic resource availability levels. An optimization-based MILP

scheme and VNF provisioning heuristic are then developed to incorporate these availability

levels, i.e., service paths is computed as the product of availability levels of all resources

satisfying the request. This study also assumes that the NFVI is comprised of a large

number of nodes with limited resources distributed across multiple datacenters, and that

each node can only host one VNF instance. Overall, the MILP can only handle a small

number of demands, whereas the heuristic is capable of fielding more realistic scenarios.

Associated results here confirm excessively high computation times with the MILP approach

even for smaller testcases. However, although a-priori probabilities are considered here,

broader resources constraints, routing costs and traffic engineering concerns are not studied.

Akin to the above, [JF01] presents another polynomial-time greedy heuristic scheme

to collect the actual temporal availability of physical resources. This information is then used

to compute the probabilistic availability of a path and further resolve a primary-protection

path pair. Additionally this scheme also tries to increase the acceptance rate of online re-

21



www.manaraa.com

quests by minimizing physical resources consumption, i.e., map NFs according to availability

and resource usage levels. Overall results show that the proposed scheme gives notable bet-

ter resilience and resource efficiency versus traditional greedy primary-backup protection

schemes (k -shortest paths), e.g., 27% shorter path lengths (link usage).

Finally, [WD01] introduces a cost-efficient redundancy algorithm (CERA) heuristic to

efficiently place primary (working) VNFs along with redundant/backup ones. The authors

assume that most studies do not consider each NF as part of an interdependent end-to-

end service connection, i.e., service chain. In particular, the protection mapping takes into

account the NFVI resources by using a cost-aware importance measure (CIM) scheme to

minimize resource allocation of backup nodes, which tries to guarantee improved performance

and therefore higher reliability to the SFC backup paths. Finally, the proposed scheme is

compared with two other schemes, i.e., one which tries to minimize backup physical resources

costs and another which tries to achieve maximum reliability per iteration. Results are

presented for four different metrics, i.e., backup allocation cost, number of physical nodes

within a backup path, cost-effective ratio and number of accepted requests. Findings confirm

that the CERA scheme outperforms the others for all scenarios. However no failover and

disaster-recovery results are presented.

2.3.2 Multi-Failure Scenarios

As noted earlier, most existing VNF provisioning solutions are only designed to handle

isolated single failures. As such, these methods will be largely ineffective against large-scale
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failure events/stressors, such as natural disasters, power outages, WMD attacks, etc. In

fact, there are no known studies on VNF placement and routing within the context of multi-

failure disasters. Moreover, the existing body of work on network disaster-recovery has only

focused on point-to-point connections and virtual network (VN) services. Consider some

details here.

In general, disaster events yield a large number of infrastructure node/link failures

with a high degree of temporal and spatial correlation. As a result most solutions here

define an a-priori set of “risk regions” to model probabilistic disaster events (also termed

as stressors). Namely, here each region has an associated probability as well as failure

sub-graph, i.e., vulnerable subset of datacenter nodes and links. Along these lines, [HL01]

presents one of the first studies on “risk-aware” connection routing. Namely, a probabilistic

shared risk link group (p-SRLG) model is introduced to specify a-priori failure risk regions

with conditional node and link failure probabilities. Leveraging this, an advanced integer

non-linear programming (INLP) formulation is then presented to minimize single connection

path and disjoint primary-backup path pair failure risks. Further approximation and linear

relaxation techniques are also developed to improve scalability. However, this framework

does not incorporate any resource efficiency concerns and hence may lead to longer paths.

To improve resource efficiency, [DO01] proposes a graph-based heuristic method to

jointly incorporate both risk and resource usage concerns. In particular, the authors assume

that all requests arrive in a dynamic manner and are composed of a source node, destination
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node and a required link capacity. Also, a set of probabilistic independent failure events

(p-SRLG) are also assumed here, as per [HL01], and associated with a plural number of vul-

nerable links. The heuristic scheme analyzes the topology graph and prunes all links with

insufficient capacity, creating a secondary topology graph. Adaptive weights are then as-

signed to the remaining links according to their respective failure probabilities and k -shorest

paths are computed for the primary source-destination route. Link-disjoint protection paths

are computed for each of these k paths and the path-pair with lowest failure probability

is chosen, characterizing a “risk-aware” weighted link-disjoint path pair definition. Finally,

the proposed risk-aware joint protection path and load balancing scheme is compared with

three other schemes that do not implement risk-awareness and one that does in regards

to failure rate, protection failure rate, bandwidth blocking rate and average route length.

Overall, results confirm that the proposed method yields much lower failure rates versus

“non-risk-aware” schemes (about 75% less) and yields a minimal increase in average route

lengths. Hence this study shows that combining risk-awareness, and traffic engineering can

yield substantial gains with regards to survivability.

More recently, follow-on studies have also applied the above-detailed multi-failure

“risk-region” models for VN services. For example, [HY04] and [GS02] proposes two heuristic

schemes to achieve backup virtual node and link provisioning, i.e., termed as supplemental

and incremental. The former computes mappings for each risk region and then combines

them using resource sharing on common nodes and links. Meanwhile the latter adds backup
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virtual nodes/links as needed to a base mapping in order to protect against each potential

risk region. However, these schemes generally yield very high resource inefficiency, and hence

further work in [FG01] proposes improved optimization and heuristics-based strategies that

work by grouping the failure regions, see related reference for details.

2.4 Open Challenges

Despite the aforementioned contributions, in general there are no known studies on

disaster-aware provisioning of NFV-capable infrastructures. This is a major concern since

large stressor events can cause multiple failures and resulting widespread services disruption

across the whole network, i.e., due to the high degree of virtual function multiplexing being

done. In light of the above, there is a pressing need to study NFV provisioning within the

context of multi-failure disasters, i.e., network function placement and routing. These solu-

tions should incorporate a-priori risk (vulnerability) information and also take into account

resource efficiency concerns.

Furthermore, as noted in Section 2.2, most regular VNF mapping schemes perform

NF placement under the assumption that datacenters have infinite resources to satisfy all

demands. However, under heavy load scenarios and/or post-fault conditions, resource con-

straints (scarcity) will likely arise. As a result, there is also a further need to incorporate

datacenter node and link bandwidth constraints into the VNF placement and routing pro-

cess.
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Chapter 3 Joint VNF Placement and Routing with Traffic Engineering 1

As previously mentioned, an increasing number of studies have looked at VNF place-

ment and routing to improve service deployment performance, efficiency and reliability. How-

ever most of these efforts have tried to minimize placement costs under the assumption of

unlimited network resources to satisfy all requests. As a result, maximizing the number

of satisfied NFs is usually secondary. To address more realistic scenarios, this chapter ad-

dresses more realistic resource-limited scenarios, e.g., such as those arising during heavy load

intervals or after resources failures/outages.

Foremost, an optimization-based scheme is presented for VNF placement and routing,

i.e., termed as the multi-objective minimized link load ILP (MLL-ILP) scheme. This solution

pursues several objectives in a weighted manner in order to provide an adaptive solution, i.e.,

maximize the number of satisfied requests, reduce infrastructure deployment costs, reduce

routing costs, and also improve load-balancing, overall this multi-objective approach allows

providers to tailor the outputs to meet their desired needs/tradeoffs. For example if a

datacenter has limited physical resources but sufficient link and routing capacity, deployment

costs may be given higher weighting. On the other hand, if link capacities are constrained

and path hops and delay times are high, lower routing costs may be more favorable. Also, the
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ability to implement load balancing is becoming increasingly important, i.e., as it can benefit

service performance in cloud computing and in general, lead to increased revenues. Hence

the proposed solutions also incorporate links load levels to improve the VNF provisioning

process. Finally, owing to ILP complexity, a further polynomial-time heuristic scheme is

also presented to improve scalability, i.e., termed as the multi-objective minimized link load

greedy heuristic (MLL-GR) scheme. These methods are also analyzed and compared for

sample VNF deployment scenarios. Overall this work provides a good basis to develop

subsequent disaster-ware VNF schemes.

3.1 Notation Overview

The requisite notation is introduced first. Consider a network infrastructure topology

represented by a graph G = (V,E), where V is the set of nodes and E the set of links. Each

link (i, j) ∈ E has an associated cost cij and capacity bij, which quantifies the cost of using

that link and its maximum bandwidth capacity, respectively. Meanwhile, the subset D ⊆ V

represents the set of datacenters implementing the NFs, and the complete set of NFs is

denoted by F . Hence a given datacenter d ∈ D only implements a subset of functions

Fd ⊆ F . Furthermore, the set of requests is given by the set R. Namely each request r ∈ R

is characterized by a 4-tuple (srcr, dstr, Fr, br), which denotes the source and destination

nodes of the flow, the set of requested functions Fr ⊆ F , and the required (minimum)

bandwidth interconnection capacity, respectively.
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Now it is assumed that the infrastructure has a total of m different VNF resource

types, i.e., resource dimensionality. For example, m=3 can denote processor, storage and

memory. In order to model resource constraints, it is also assumed that a datacenter d ∈

D has a finite amount of resources Wd = {wd,1, wd,2, ..., wd,m}. Hence a datacenter d ∈

D implements a function i ∈ Fd must employ wi
d,1, w

i
d,2, ..., w

i
d,m resources. Furthermore,

this resource requirement is also datacenter-dependent, which reflects the fact that some

datacenters may be designed/specialized to implement certain especific functions. Finally,

the setup cost of locating/placing an instance of a function i ∈ Fd at datacenter d is given

by cid, and an instance of function i at datacenter d can serve up to λid requests. Hence in

order to accommodate more requests, multiple instances of function i must be deployed at

datacenter d, with each consuming additional resources and imposing further setup cost. All

of the afformentioned variables are also summarized in Table 3.1, and several other variables

are also defined in Section 3.2.

3.2 Multi-Objective Minimized Link Load ILP (MLL-ILP) Model

A detailed MLL-ILP optimization formulation is now presented to achieve several key

objectives, i.e., minimize the number of satisfied NFs, minimize deployment cost, minimize

routing cost and minimize the maximum overall link load. Consider some requisite ILP-

related variable definitions first:

• xir,d ∈ {0, 1} r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd: Indicates whether function i ∈ Fr

requested by request r ∈ R is implemented at datacenter d ∈ D, i.e., binary
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Table 3.1: List of variables

Variable Description
V Set of nodes
v Node ∈ V
E Set of links

(i, j) Link ∈ E connecting nodes i and j
cij Link (i, j) setup cost
bij Link (i, j) bandwidth

D ⊆ V Set of datacenters
d Datacenter ∈ D
F Set of all functions
i Function ∈ F
R Set of requests
r Request ∈ R
Fr Set of functions requested by request r
br Minimum load required by request r
m Resource dimensionality

• yid ∈ Z+ d ∈ D, i ∈ Fd: Represents the number of instances of function i ∈ F at

node d ∈ D

• li,jr ∈ {0, 1} r ∈ R, (i, j) ∈ E: Indicates whether link (i, j) ∈ E is used to route

the traffic flow for request r ∈ R, i.e., binary

• 0 ≤ α ≤ 1: Represents the highest overall link usage ratio, i.e., sum of all br

using a link (i, j) ∈ E divided by link capacity bi,j, i.e., fractional quantity
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Based upon the above, the MLL-ILP objective function is defined as:

max F = w1

∑
r∈R

∑
i∈Fr

∑
d∈D|i∈Fd

xir,d − w2

∑
d∈D

∑
i∈Fd

cidy
i
d

−w3

∑
r∈R

∑
(i,j)∈E

cijlijr − αw4

(3.1)

subject to:

∑
d∈D

xir,d ≤ 1 r ∈ R, i ∈ Fr (3.2)

xir,d ≤ yid r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd
(3.3)

∑
i∈Fd

wi
d,jy

i
d ≤ wd,j d ∈ D, r ∈ R, j ∈ {1, 2, ...,m} (3.4)

∑
r∈R

xir,d ≤ λidy
i
d d ∈ D, i ∈ Fd (3.5)

∑
j:(i,j)∈E

lijr −
∑

j:(j,i)∈E

ljir =



−1; i = dstr, srcr 6= dstr

1; i = srcr, srcr 6= dstr

0; otherwise. i ∈ V, r ∈ R

(3.6)

∑
(d,j)∈E

ldjr ≥ xir,d r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (3.7)

∑
r∈R

li,jr br ≤ αbi,j {i, j} ∈ E (3.8)
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Overall, the objective function in Eq. 3.1 consists of a series of terms scaled by their

respective weighting factors, i.e., w1, w2, w3 and w4. In particular, the first term in Eq. 3.1

represents the total number of requested NFs, whereas the second term is the total cost to

setup/deploy NFs at the various datacenters (also called deployment cost). Meanwhile, the

third term is the total routing cost, and the fourth term represents the maximum overall

link load. Note that the second, third and fourth terms are negative since maximizing a

negative term is equivalent to minimizing it [JC02],[JC03]. Furthermore, the setup cost is

directly related to the number of satisfied functions and number of instances of each function.

Thus the second term (setup cost) depends upon the number of NFs per request and on how

many datacenters are used to host these NFs. On the other hand, the third and fourth terms

(routing and maximum link load costs) depend upon the number of requests and number of

links used. These latter two terms are independent of the number of NFs and NF instances.

Now one of the key goals of the MLL-ILP scheme is to avoid link overload or at least minimize

link load. Therefore the fourth term in Eq. 3.1 introduces a link load minimization function

variable α, which is linked to Eq. 3.8 (detailed later).

Meanwhile, Eqs. 3.2-3.8 represent the model constraints. Namely, Eq. 3.2 ensures

that a function i requested by request r is serviced by at most one datacenter d. Since one of

the objectives of the MLL-ILP scheme is to maximize the sum of all variables xir,d (first term

of Eq. 3.1), the optimal solution will drive the constraint in Eq. 3.2 to equality. Meanwhile

Eq. 3.3 mandates that function i should be located at datacenter d if request r is assigned
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to function i at datacenter d. Also, Eq. 3.4 ensures that the aggregate amount of type j

resources used by all functions instantiated at datacenter d should be limited by the total

amount of such resources at this datacenter, i.e., wd,j ∈ Wd, j ∈ {1, 2, ...,m}. Similarly, Eq.

3.5 states that the total number of requests for function i served by datacenter d should

be bounded by the number of instances of i at d times the capacity λid of an instance i.

Additionally, Eq. 3.6 represents the necessary flow conservation constraint. Also, Eq. 3.7

guarantees that if a function i is requested by a request r and is placed at datacenter d, then

the demand traffic flow must be routed through that datacenter. Finally, Eq. 3.8 relates to

load-balancing and ensures that the sum of all links (i, j) used by a traffic flow (associated

with request r) times the requested load br demanded by request r is bounded by the product

of the link capacity bi,j times α. As a result, traffic flows are associated with links that have

reduced load profiles (higher available capacity).

3.3 MLL-ILP Complexity

Since the MLL-ILP objective function and constraints are linear and all variables are

either integer or binary, the optimization problem is NP-hard [TC01]. Hence the complexity

of this model can be judged by the total number of variables that the scheme utilizes. In

particular, the total number of variables xir,d, y
i
d and li,jr (Eqs. ??-??) is upper-bounded by

|R||F ||D|, |F ||D| and |R||E|, respectively.Based upon this, the upper-bounds for the number

of constraints, Eqs. 3.2-3.5, are also |R||F |, |R||F ||D|, |R||D||Wd| and |F ||D|, respectively.
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Meanwhile, the upper-bounds for the number of constraints in Eqs. 3.6 and 3.7 are

|V ||R| and |R||F ||D|. Finally, the upper-bound on the number of constraints in Eq. 3.8 is

|V ||R|+ 1.

From the above, the upper-bound for the total number of variables is dominated by

the product |R||F ||D|. Now in general, it is very difficult to pre-specify limits for the number

of requests or number of functions to ensure ILP convergence. However for small-to-medium

sized network topologies, the proposed ILP can be solved in a reasonable amount of time,

i.e., less than a few hundred nodes.

3.4 MLL-GR Heuristic

Although the MLL-ILP approach provides an optimal VNF placement solution, its

run-time performance can be a concern in complex scenarios with increased variable costs

and high resource dimensionality. As a result, heuristic schemes can be developed to build

more scalable, albeit non-optimal, solutions. Along these lines, a greedy graph-based heuris-

tic algorithm is also presented to solve the NF placement problem in larger networks, as

shown in Figure 3.1. Overall, this algorithm implements a two-stage solution. Namely, given

a graph and input parameters (akin to MLL-ILP; source, destination, set of NFs and min-

imum link capacity), the algorithm returns the VNF mappings, associated paths, number

of function instances in each datacenter and the highest link load. Before presenting this

scheme, however, some further variable definitions are introduced here as follows.
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• K: Number of datacenters that satisfies function i requested by request r

• dk: Datacenter that satisfy function i requested by request r

• yidk : Total number of instances of function i in datacenter dk

• λidk : Maximum number of clients per instance of function i in datacenter dk

• D(r): Set of datacenters serving request r

• C(r): Subset of D(r) that tracks the datacenters serving request r connected to their

respective neighbors within the source-destination path

Overall, the first stage in Figure 3.1 (lines 4-15) focuses on NF placement at specific

datacenters to reduce deployment cost. Namely, for each function i requested by r ∈ R, the

algorithm selects the datacenter dk that implements i with the lowest setup cost and at the

same time has sufficient resources to host upcoming requests (line 8). Once a NF is placed,

the resources at datacenter dk are updated accordingly. Namely if there is an instance of

NF i at datacenter dk with enough instance capacity to satisfy request r, the remaining

capacity is simply decremented by 1. Otherwise, another instance of NF i is created at cost

cidk , where each newly-created instance can serve λidk − 1 requests. Hence either way, the

available resource levels at datacenter dk, i.e., wdk,i (1 ≤ j ≤ m) are reduced by wi
dk,j

(line

9, Figure 3.1). Note that serving a request does not incur any additional cost, i.e., only new

instantiations of NF i do. Additionally, for each new instance of NF i, the total number of

instances at datacenter yidk is also incremented by 1 (line 10, Figure 3.1) and xir,dk is set to

1 as well (line 11, Figure 3.1).
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To conclude NF placement (first stage), datacenter dk is also added to a set variable,

D(r), which tracks the subset of datacenters serving request r.

Meanwhile, the second stage in Figure 3.1 (lines 14-27) computes the shortest path

between the source srcr and destination dstr, that passes through all datacenters dk ∈ D(r).

Initially, the algorithm starts by connecting the source node srcr to the first datacenter d1

in D(r). In particular, this connection route is computed using the constrained Dijkstra’s

shortest path algorithm (line 20, Figure 3.1) and only considers links in G(V,E) with suffi-

cient capacity to support the requested br. The routing cost here is defined by the sum of the

setup cost of all links associated with a traffic flow and each respective link capacity/request

load ratio, as follow:

∑
(i,j)∈E

cij + br/bij (3.9)

All variables li,jr along the path are then set to 1 (line 21, Figure 3.1), and datacenter

d1 is also added (line 22, Figure 3.1) to another set variable C(r). Namely, this subset

tracks the datacenters serving request r that have already been connected to their respective

neighbors within the srcr and dstr path. Now if there is another datacenter j ∈ D in the

path between the source and destination, it is also added to C(r) (line 23, Figure 3.1), i.e., in

order to avoid duplicated/overlapped routes for datacenters yet to be analyzed in upcoming

iterations. Before returning to the beginning of the loop, the temporary src variable is

also replaced by the destination datacenter temporary dst (line 24), which is initially set to

datacenter dk (line 18).
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The algorithm (second stage) then loops to process the next datacenter serving the

request. Again, a shortest-path is computed between the previous destination and the fol-

lowing datacenter dk ∈ D(r), i.e., in the second iteration a path is computed between d1 and

d2. In the two final steps, a shortest path is computed between the last datacenter and the

destination dst (line 30), and all links li,jr within that traffic flow are set to 1 (line 27). Now,

note that the greedy heuristic scheme is not an optimization algorithm, which means that

it does not loop searching for lower solutions. It is a one-time iteration method, and by the

end of the only iteration, costs are calculated for each and all requests.

3.5 MLL-GR Complexity

Consider the computational complexity of the MLL-GR heuristic. Conceptually, this

algorithm tries to lower runtime overhead by finding the first acceptable solution. In par-

ticular, the first stage selects a datacenter, d, that can implement function i ∈ Fr with the

lowest cost (line 8, Figure 3.1). Note that NF placement here is done in a serialized manner,

i.e., each NF is placed independent of requirements of the following NF. However, the second

stage poses higher complexity as it runs the constrained Dijkstra shortest-path algorithm

within a double loop. In particular, this stage is invoked a total of |R||D| times, D(r) ≤ D.

Now assuming a binary heap Dijkstra implementation complexity of O(|E|log|V |) [TC01],

the overall complexity of the MLL-GR heuristic scheme is dominated by the second stage

and is given by O(|R||D||E|log|D|).
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1: INPUT: G(V, E), cij∀(i, j) ∈ E,R, F,D
2: OUTPUT: xir,d, y

i
d, l

ij
r values

3: set xir,d = 0, yid = 0, lijr = 0 for all r ∈ R, i ∈ Fr, d ∈ D, (i, j) ∈ E
{BEGIN FIRST STAGE}

4: for all r ∈ R
5: D(r) = {}
6: k = 1
7: for all i ∈ Fr

8: dk = datacenter that implements i at minimum cost and has enough resources to serve an
additional request

9: update resources of dk
10: update yidk
11: set xir,dk = 1
12: D(r) = D(r) ∪ dk
13: k = k + 1
{END FIRST STAGE}
{BEGIN SECOND STAGE}

14: for all r ∈ R
15: src = srcr
16: C(r) = {src}
17: for k = 1 to |D(r)|
18: dst = dk
19: if dk /∈ C(r)
20: SP = constrained Dijkstra(src, dst)
21: set lijr = 1 for all link (i, j) ∈ SP
22: C(r) = C(r) ∪ dk
23: C(r) ∪ j, for all datacenter j ∈ SP, j ∈ D(r)
24: src = dst
25: dst = dstr
26: SP = constrained Dijkstra(src, dst)
27: set lijr = 1 for all (i, j) ∈ SP
{END SECOND STAGE}

28: return NF mappings, NF instances in each datacenter, links within a path

Figure 3.1: MLL-GR heuristic algorithm
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Figure 3.2: NSF network topology.

3.6 Performance Evaluation

The proposed VNF routing and placement solutions (MLL-ILP and MLL-GR) are

now analyzed for a sample deployment scenario. Specifically, the optimization model is

solved using the lpsolve solver API running on a 64-bit Windows machine with an Intel(R)

Core(TM) i5 CPU (1.4GHz) and 2 gigabytes of RAM. In order to evaluate the proposed

NF placement schemes, a sample 16 node/25-link network topology is chosen here, as shown

in Figure 3.2. This setup reflects a large backbone facility, and it is further assumed that

each node is also a datacenter i.e., in addition to providing routing/switching capabilities

(|V |=|D|=16). The datacenter resource dimensionality is also set to m=3, i.e., representing

processor, memory and storage.

Overall, three different testcase scenarios are defined and tested here. In particular,

the first testcase performs sensitivity analysis in order to fine tune the various weighting fac-

tors in the objective function, Eq. 3.1 (for use in the second and third testcases). Meanwhile,
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Table 3.2: Testcases parameters

Parameter First Testcase Second Testcase Third Testcase
Link 1,000 1,000 10,000

Resources (wd,1,wd,2,wd,3) 500 500 5,000
Weight w1 1,000
Weights w2 1/10 1 1
Weights w3 10/1 1 1
Weights w4 10/1000 1,000 1,000
Function set f0,f1,f2,f3,f4

Required Resources (wi
d,j) 30 ≤ wi

d,j ≤ 70

Function Setup Cost 50
Instance Capacity 2
Link Setup Cost 20

the second and third testcases are used to evaluate the proposed schemes for varying physical

and links resource levels. Specifically, the second testcase is termed as an under-resourced

scenario and uses lower values for both datacenter and connectivity resources. Meanwhile

the third testcase is termed as a highly-resourced scenario and emulates settings with higher

resources levels. In light of the above, all testcases have three different datacenter resources

levels, as shown in Table 3.2, i.e., Wd={wd,1, wd,2, wd,3}. Namely, the first and second test-

cases use values of wd,1=wd,2=wd,3=500 units, respectively. Additionally, all link capacities

are set to 1,000 units here, i.e., bi,j ≤ 1, 000 for all (i, j) ∈ E. Meanwhile, the third testcase

sets all datacenter resource levels to 5,000 units. The corresponding link capacity is also

increased to 10,000 units here. The various other test parameters are equivalent across all

testcases. Namely, the function set F is limited to five types, i.e., F={f0, f1, ..., f4} and it

is also assumed that all functions are implemented at each datacenter. i.e., Fd = F . The
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amount of resources wi
d,j needed to implement a function i∈Fd is also uniformly distributed

between 30 ≤ wi
d,j ≤ 70 units. Meanwhile the setup cost of placing an instance of function

i∈Fd at datacenter d∈D is set to cid=50, and the instance capacity λid of a function i at

datacenter d is set to 2. Finally, each request r requires four NFs, namely Fr is randomly

selected from F (Fr⊆F ).

3.6.1 Weighting Factors Selection (First Testcase)

Proper selection of weighting factors in the objective function, Eq. 3.1, is crucial

for effective NF placement and routing. As a result the first testcase evaluates the im-

pact/sensitivity of these values in maximizing the number of satisfied requests (w1) and

minimizing the deployment, routing costs and link load costs (w2, w3 and w4). Now recall

that the first term in Eq. 3.1 represents the number of satisfied NFs, which is typically a

small value. Also the other terms represent costs with negative values (minimization). Hence

it is imperative to assign a relatively higher value to w1. Meanwhile, the deployment cost

(second term) is related to the number of satisfied NFs i and their respective costs. Hence

deploying multiple NFs at the same datacenter reduces the deployment cost of each instance

capacity, λid, at a datacenter. On the other hand, the routing cost (third term) and the link

load cost (fourth term) are associated with the number of links used for each traffic flow.

Although both of these values are related to the number of hops, minimizing link load cost

can result in longer paths. Clearly, this trade-off needs to be analyzed further.
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In general, deployment and routing costs are associated with a large number of vari-

ables in the mLL-ILP model, i.e., up to |D||F | and |R||E|, respectively. Hence increasing one

of the associated (minimization) terms in Eq. 3.1 can lower the overall cost. However this

approach may also increase the other costs. Accordingly, Figure 3.3(a) and Figure 3.3(b)

show the trade-off between deployment and routing costs. Namely, Figure 3.3(a) compares

the deployment cost for different weight values of w2 and w3. Overall, a larger routing cost

weight (w3=10) gives increased deployment costs, whereas a larger deployment cost weight

(w2=10) results in lower deployment cost. Meanwhile, Figure 3.3(b) also indicates that

assigning higher weights to routing cost reduces this component at the expense of higher

deployment cost.

Finally, consider the link load minimization term (fourth term) in Eq. 3.1. This term

only has a single fractional value α, which is computed as the ratio of between all requests br

using a specific link (i, j) ∈ E and its corresponding link capacity bi,j. Note that the fourth

term is directly correlated with the third term, i.e., routing cost, since both use variables lijd

and br. Hence w4 can be used as a balancing factor to select between one of the other two

minimization terms, i.e., deployment or routing cost. Namely, minimizing α reduces routing

cost and increases deployment cost. Furthermore, increasing w4 decreases routing cost and

increases deployment cost. Finally, w4 also provides increased sensitivity due to its fractional

value (greater range).
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Now in order to demonstrate the effect of varying w4, an empirical methodology

is deployed here using two different values, i.e., w4=10 and w4=1, 000. Specifically, tests

are performed for a varying number of input batch requests, ranging from 1 to 20 (20

placement solutions) with the remaining weights set to w1=1, 000, w2=1 and w3=1. Here,

Figure 3.4(a) compares the average deployment cost for both values of w4, i.e., computed as

deployment cost/number of requests. Overall, these results show that the two costs are very

similar. However, the average routing costs shown in Figure 3.4(b) show notable differences.

Namely, the w4=10 value gives anywhere from 2 to 4 times higher values than w4=1, 000,

i.e., computed as routing cost/number of requests.

Overall, the maximum link load variable α can be used to modify NF placements

according to service provider needs. For example, some may prefer placing NFs to reduce

deployment costs due to physical datacenter resources limitations. Meanwhile others may

prefer to reduce routing cost due to network link transmission constraints, i.e., lower link

capacity, increased delays, etc. Based upon the above sensitivity analysis, the respective

weighting factors are set to w1=w4=1, 000 and w2=w3=1 in the remaining testcases.

3.7 Under-Resourced Scenarios (Second Testcase)

The second testcase considers under-resourced settings and assumes the same set of

input parameters defined in Section 3.6. In particular, up to 30 arriving batch requests

are processed here to measure the impact of reduced datacenter and link level resources, as

shown in Table 3.2. For comparison purposes, “standardized” non-load-balancing versions of
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the respective optimization and heuristic schemes (i.e., MLL-IP and MLL-GR) are devised

and also tested here. In particular, the joint routing and placement ILP (JRP-ILP) method

removes the fourth term in the objection function, i.e., w4α in Eq. 3.1. Similarly, the joint

routing and placement greedy heuristic (JRP-GR) scheme implements the algorithm shown

in Figure 3.1 but removes the fourth term w4α.

Overall Figure 3.5(a) plots the number of satisfied NFs for the second testcase and

shows that all four schemes begin to drop demands after 24 requests, i.e., due to resource

limitations. Hence in the subsequent plots, results are only shown for up to 23 requests.

However, note that both the JRP-ILP and JRP-GR schemes (yellow and green lines) also

fail to satisfy the 15th request due to their inability to balance link loads. In particular, these

methods yield higher link congestion, leading to overload and rate blocking on selected links.

Meanwhile, Figure 3.5(b) also compares the deployment cost for this testcase. Clearly,

all schemes yield very similar values, albeit the JRP-ILP and JRP-GR methods yield zero

cost for request 15 since they cannot satisfy the requested NFs here. Furthermore, the MLL-

ILP (blue) and JRP-ILP (yellow) schemes also exhibit negligibly higher deployment cost (by

about 5%) for request 19 and beyond. However, the routing costs are shown in Figure 3.6(a)

and clearly show a huge separation between the optimized ILP models (blue and yellow) and

greedy heuristic schemes (red and green). Namely, the latter methods yield about twice as

much routing costs than their respective optimization-based counterparts. Now in general,

the routing cost is directly related to the number of links used to route the connections.
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Along these lines, Figure 3.6(b) also plots the number of links associated with the deployed

traffic flows. Clearly these results mirror those in Figure 3.6(a).

The findings in Figure 3.6(a) and (b) also indicate that the routing costs and number

of links for the MLL-ILP scheme start to stabilize after 19 requests, whereas the JRP-

ILP scheme maintains linear growth. Now one may postulate that the MLL-ILP scheme

should use more links than the JRP-ILP scheme since it implements link load minimization.

However, the MLL-ILP solution tries to minimize routing cost, which is directly related to

link setup cost. Hence this scheme is more effective in minimizing routing cost and thereby

the number of links as well.

3.8 Highly-Resourced Scenarios (Third Testcase)

Most service providers deploy highly-resourced nodes in order to handle demand

elasticity and achieve rapid service scalability. Along these lines, the third testcase is designed

to evaluate these scenarios, see Table 3.2. Foremost, initial tests are done to determine if all

four schemes can solve the NF placement and routing problem for all requests in both types

of network scenarios, e.g., to differentiate between the MLL and STD schemes. Namely,

Figure 3.7(a) compares the two ILP schemes with regards to the number of satisfied NFs for

request batch sizes ranging from 1-40 requests. These results show that the JRP-ILP scheme

is unable to satisfy requests 11, 13 and 38, unlike the MLL-ILP scheme which successfully

provisions all requests. Equivalent results for the greedy heuristics in Figure 3.7(b) also

indicate that the non-load-balancing JRP-GR scheme fails to satisfy the above-noted requests
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as well (unlike the JRP-GR scheme). These findings clearly indicate that incorporating

link load can help reduce demand blocking rates even in such high-resourced testcases, i.e.,

approximately 5-7.5% in this case.

In light of the above, further tests are also done with only the MLL-based schemes.

Namely, Figure 3.8(a) plots the overall deployment costs and confirms similar performance

between the optimization-based (MLL-ILP) and heuristic (mLL-GR) schemes. In particular,

both methods can satisfy up to 160 requested NFs across 40 demands, i.e., 4 NFs per request.

For example, the average overall deployment costs across all requests are 1,649.3 and 1,569.2

for the MLL-ILP and MLL-GR schemes, respectively (MLL-ILP deployment cost is 5%

higher than MLL-GR). However, routing costs are shown in Figure 3.8(b) and indicate

that the heuristic MLL-GR scheme gives much higher values than its optimization-based

counterpart, i.e., about 128% higher (average overall routing costs are 982 and 2,221.5 for

MLL-ILP and MLL-GR, respectively). Similarly, the MLL-GR heursitic also uses an average

of 111 links to establish all traffic flows, whereas the MLL-ILP scheme only uses 48.6 links,

as shown in Figure 3.9 Additional tests (not shown) are also done with larger batch sizes of

up to 60 requests, and the findings confirm successful placement of all NFs with the same

relative performance between the two methods.
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(a)

(b)

Figure 3.3: First testcase: a) average deployment cost for different w2 and w3 weights b)
average routing cost for different w2 and w3 weights
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(a)

(b)

Figure 3.4: First testcase: a) average deployment cost and b) average routing cost
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(a)

(b)

Figure 3.5: Second testcase: a) satisfied NFs, and b) deployment cost
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(a)

(b)

Figure 3.6: Second testcase: a) routing cost, and b) number of links
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(a)

(b)

Figure 3.7: Third testcase: satisfied NFs: a) MLL-ILP and JRP-ILP, b) MLL-GR and
JRP-GR
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(a)

(b)

Figure 3.8: Third testcase: MLL schemes a) deployment cost, and b) routing cost
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Figure 3.9: Third testcase: number of links - MLL-ILP and MLL-GR.
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Chapter 4 Survivable Joint VNF Placement and Routing 1

As noted in Section 2.3, there are no known studies on disaster-aware VNF provision-

ing, i.e., to handle multiple failures in large NFV-capable infrastructures These conditions

can include power outages, weapons of mass destruction (WMD) attacks and a whole range

of natural disasters. Given the critical nature of many business services, it is vital to address

these concerns for emerging NFV-based services, i.e., network function placement and rout-

ing. Ideally, these solutions should incorporate some a-priori knowledge of potential failure

(risk) regions in conjunction with cost reduction and resource efficiency concerns.

In light of the above, this chapter presents the first comprehensive modeling of multi-

failure events/scenarios. Specifically, an expanded multi-objective ILP optimization scheme

is presented for VNF placement and routing, termed as “risk-aware” ILP (RA-ILP). This

solution tries to improve overall survivability as well as maximize the number of satisfied NFs

and simultaneously minimize deployment costs, routing costs and link load. Furthermore,

a greedy heuristic scheme is also introduced with the same objectives in order to improve

scalability for larger, more realistic network scenarios, i.e., termed as “risk-aware” greedy

heuristic (RA-GR) scheme. Finally, detailed testcase scenarios are evaluated to verify the

survivability and cost performance of these two methods. Further details are now presented.
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4.1 Notation Overview and Failure Model

The requested notation is introduced first. Overall, many of the variable definitions

introduced in Section 3.1 are re-used here, i.e., for physical network, infrastructure, resources

and NFV-related demands. Furthermore, a realistic probabilistic model is also presented

here to capture large-scale disaster events yielding multiple highly-correlated spatial and

temporal link failures. In particular, the failure model developed in [HL01] and further re-

used in [FG01], is re-used here. Foremost, a set of pre-defined (a-priori) stressors is defined,

detailed by set U . This set is comprised of a number of failure events u ∈ U , where each has

a random, independent occurrence probability p(un). Without loss of generality here, it is

assumed that all stressor events are sufficiently rare and hence treated as mutually-exclusive,

i.e.,
∑

∀un∈U p(un) = 1.

Furthermore, each event un also has an associate risk region defined by a set of

vulnerable links, i.e., probabilistic shared risk link group (p-SRLG or simply SRLG) [FG01].

Again, without loss of generality, it is assumed that each event in U is geographically non-

overlapping, i.e., a given link in G(V,E) can only be located in one particular SRLG. Finally,

a conditional failure probability is also defined for each link a given region, i.e., ω(i, j), with

respect to occurrence of stressor un. All these conditional link failure probability here are

assumed to be independent [HL01].

Figure 4.1 shows a sample VNF placement example with three failure regions, U={u1,

u2, u3}, based upon the earlier configuration in Figure 2.1. These regions are physically
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Table 4.1: List of variables

Variable Description
set U Set of a-priori potential stressor events, where U={u1, u2, ..., uN}
un Stressor event, i.e., u ∈ U
p(un) Occurrence probability of failure event un
ω(i, j) Unconditional failure probability associated with link (i, j) ∈ E in

the region of stressor event un ∈ U , 0 ≤ ω(i, j) ≤ 100.

disjoint and have specific failure probabilities associated with all links falling within each

stressor (SRLG) region, i.e., ω(i, j), where i, j ∈ E. Accordingly, the proposed “risk-aware”

VNF placement and routing schemes should now take into account these failure probabilities

in order to improve reliability.

Overall, the above probabilistic model can be used to represent various types of multi-

failure stressor events, i.e., power outage cascades, WMD attacks, etc. Now earlier studies

in [SG02] have detailed the impact of large-scale nuclear EMP attacks, a particular form

of WMD stressor. Namely, this work specifies the overall geometry of the resulting failure

area caused by space-based detonations occurring at varying heights of burst (HoB) and

warhead yield. The overall fallout is composed of a set of sub-areas with varying damage

intensities, as shown in Figure 4.2. Based upon this, it is possible to further define the failure

probabilities of unshielded electric components (network nodes and fiber optic links) in the

different sub-areas. Hence the proposed testcases here specifically incorporate nuclear EMP

stressor types.
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Figure 4.1: VNF request model in a probabilistic multi-failure scenario.

4.2 “Risk-Aware” Network Function Placement and Routing

As noted in Section 2.3, to the best of the authors’ knowledge, there are no known

studies on NFV provisioning under multiple correlated failures. Accordingly, an expanded

ILP formulation is now developed to incorporate a-priori stressor events into the VNF place-

ment and routing process to reduce downtime (due to failures) and maximize the number

of satisfied requests, i.e., RA-ILP scheme. Next, a greedy heuristic scheme is also presented

to overcome some of the scalability limitations of the optimization model, i.e., termed as
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Figure 4.2: Electric fields for low-altitude EMP attacks, from [SG02].

RA-GR scheme.

4.2.1 “Risk-Aware” Optimization Model (RA-ILP)

The proposed “risk-aware” VNF routing and placement optimization scheme extends

the MLL-ILP optimization model presented in Section 3.2 by directly incorporating link

failure probabilities to the routing costs. In particular, a revised objective function is defined
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as follows:

max F = w1

∑
r∈R

∑
i∈Fr

∑
d∈D|i∈Fd

xir,d − w2

∑
d∈D

∑
i∈Fd

cidy
i
d

−w3

∑
r∈R

∑
(i,j)∈E

cijlijr ∗ (1 + ω(i, j))− αw4

(4.1)

subject to:

∑
d∈D

xir,d ≤ 1 r ∈ R, i ∈ Fr (4.2)

xir,d ≤ yid r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd
(4.3)

∑
i∈Fd

wi
d,jy

i
d ≤ wd,j d ∈ D, r ∈ R, j ∈ {1, 2, ...,m} (4.4)

∑
r∈R

xir,d ≤ λidy
i
d d ∈ D, i ∈ Fd (4.5)

∑
j:(i,j)∈E

lijr −
∑

j:(j,i)∈E

ljir =



−1; i = dstr, srcr 6= dstr

1; i = srcr, srcr 6= dstr

0; otherwise. i ∈ V, r ∈ R

(4.6)

∑
(d,j)∈E

ldjr ≥ xir,d r ∈ R, i ∈ Fr, d ∈ D|i ∈ Fd (4.7)

∑
r∈R

li,jr br ≤ αbi,j {i, j} ∈ E (4.8)
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Specifically, the above objective function is very similar to that in Eq. 3.1. In particular, the

first two terms are identical here, and focus on maximizing the number of satisfied demands

and minimizing total deployment costs, respectively. However the third term in Eq. 4.1

modifies the total routing cost by scaling it in proportion to the link failure probability.

Hence this term will favor lower risk paths. Meanwhile, the fourth term is also the same as

per Eq. 3.1, i.e., for load-balancing purposes. Finally, all of the associated model constraints

are also the same as those in the non-survivable ILP model presented in Section 3.2.

Furthermore, akin to the ILP optimization scheme, the “risk-aware” RA-GR heuristic

scheme is also developed by extending the MLL-GR method in Section Figure 3.1. Namely,

the previous algorithm in Figure 3.1 now uses a modified Dijkstra shortest-path computation

approach. In particular, the link routing cost (weight) is now re-defined. In particular the

routing cost for a path is now defined as a modified version of Eq. 3.9, which directly

correlates link failure probability with static cost and load-balancing, as follows:

c′ij =
∑

(i,j)∈E

(cij +
br
bij

) ∗ (1 + ω(i, j)) (4.9)

Specifically, the cost of using each link is now increased in proportion to its risk vulnera-

bility, i.e., to favor less failure-prone routes. Hence the overall pseudocode description for

the RA-GR scheme is identical to that for the non-survivable MLL-GR scheme shown in

Figure 3.1, with the exception of the constrained function call (line 20, Figure 3.1). In

particular, this procedure is now replaced by the “risk-aware” Dijkstra, termed as “risk-

aware” constrained Dijkstra.
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Figure 4.3: NSF network topology and the respective failure regions.

4.3 Performance Evaluation

The proposed risk-aware NF placement and routing optimization and greedy schemes

are evaluated using the same infrastructure topology from Chapter 3, i.e., as shown in

Figure 3.2. However, three potential stressor (risk) regions un ∈ U are now superimposed

here, as shown in Figure 4.3, i.e., u1 comprised of links 9 links (l4,1, l4,2, l4,11, l5,1, l5,2, l5,6, l5,7,

l7,8, l7,12), u2 comprised of 4 links (l9,3, l9,6, l9,10, l9,15), u3 comprised of 4 links (l14,11, l14,12,

l14,15, l12,15). The associated link failure probabilities are further modeled based upon EMP

stressor attacks with 3 sub-areas as shown in green, yellow and red (representing 50, 75 and

100% of outage probability, respectively). Note that Figure 4.3 also shows the corresponding

failure probability values next to each link, i.e., ω(i, j), for each SRLG region (note that

these values are only used by the RA-ILP and RA-GR schemes). All survivability-related

testcases also use the same set of parameters defined for the highly-resourced scenario in
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Section 3.4, see Table 4.2. Furthermore, the earlier detailed (non-survivable) optimization

and heuristic VNF placement and routing schemes from Chapter 3 are also tested here for

comparison purposes, i.e., MLL-ILP and MLL-GR.

Table 4.2: Multi-failure testcases parameters

Parameter Idealistic Scenario Realistic Scenario
Link Resources 10,000 10,000

Node Resources (wd,1,wd,2,wd,3) 5, 000 5, 000
Weight w1 1, 000
Weights w2 1
Weights w3 1
Weights w4 1, 000
Function set f0, f1, f2, f3, f4

Required Resources (wi
d,j) 30 ≤ wi

d,j ≤ 70

Function Setup Cost 50
Instance Capacity 2
Link Setup Cost 20

Outage Event u1 Modified u1
Outage Links (1, 5), (2, 4), (2, 5), l(5, 7) (4, 11), (5, 7), (7, 12)

4.3.1 Pre-Fault Performance

Initial tests are done to gauge the (pre-fault) provisioning costs of the survivable

“risk-aware” schemes. Specifically, all schemes are compared here in terms of the number of

satisfied NFs, mapping/deployment and routing costs (under working non-failure conditions).

The request batch sizes are varied from 1-60 requests, with each request demanding 4 NFs,

i.e., the total number of NFs ranges from 4 to 240. Now carefully note that all of the

schemes try to maximize the number of satisfied NFs. As a result, the first performance

test analyzes the ability to place and route all sets of requests, and the findings confirm that
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all schemes are successful here. Subsequently, further analysis is done to compare overall

cost-related performances. In particular, the deployment and routing costs are shown first

for all schemes in Figure 4.5. Foremost, Figure 4.5(a) confirms that deployment costs are

mostly similar. However the results in Figure 4.5(b) indicate that the routing costs with the

greedy heuristic schemes (RA-GR and MLL-GR) are much higher than their optimization

counterparts. Specifically, each greedy heuristic method yields over twice the cost of its ILP

optimization counterpart, i.e., RA-GR scheme is about 2.3 times higher than the RA-ILP

and MLL-GR schemes is about 2.3 times higher than the MLL-ILP scheme. Furthermore,

the same plot also shows that the routing costs for the ILP optimization schemes are very

similar. In fact, the costs of the RA-ILP method range between 0-4% higher than MLL-ILP,

which shows that survivable schemes yield slightly longer paths in order to avoid paths with

higher failure probabilities.

4.3.2 Post-Fault Performance

Post-fault performance of the “risk-aware” schemes is now evaluated in order to gauge

the impact of a set of link failures. Namely, a multi-failure (EMP disaster) scenario is

randomly selected and triggered by choosing one of the stressor (risk) regions in Figure 4.3.

In particular, the large u1 region is chosen here as it covers the most number of links. Now

clearly, it is very difficult to predict the location/impact of a-priori failure events in advance,

especially large-scale disasters. Hence in practice, pre-defined/a-priori risk regions will rarely

match the actual failure footprints seen in the field. As a result, two different disaster
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Figure 4.4: NSF network topology and the respective failure regions.

testcases are evaluated here, i.e., idealistic and realistic. The former assures perfect/exact

knowledge of failure regions and only (randomly) fails links within the chosen pre-defined

stressor region, i.e., u1. Meanwhile the latter assumes an attack epicenter shifted slightly to

the west, i.e., resulting in some failed links falling outside the pre-defined stressor region u1,

as shown in Figure 4.4.

Results are presented for the idealistic stressor scenario first. In particular, 4 links in

region u1 are failed, as noted in Table 4.3, i.e., approximately 16% link failures out of a total

of 25 links. Now due to computational scalability limitations, the optimization schemes here

can only handle smaller networks. As a result, their associated performances are presented

separately from the greedy heuristic schemes. In particular, Figure 4.6(a) plots the number

of requests that cannot be satisfied after the stressor event for the two optimization schemes,

i.e., failure rates for MLL-ILP (non-survivable) and RA-ILP. These results show that the
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risk-aware RA-ILP scheme reduces overall failures between 10-20% for all input batch sizes.

Similarly, Figure 4.6(b) plots failed demand requests for the two greedy heuristic schemes.

These results show a much larger separation, with the “risk-aware” RA-GR scheme giving

up to 50% lower failure rates.

Now, carefully note the results in Figure 4.6 assume that a single link failure disrupts

an entire request path. However, the accuracy of the proposed risk-aware models can also

be gauged further by computing a link failure ratio, defined as

frrn =
100flrn
totalrn

(4.10)

where flrn is the number of failed links and totalfn is the total number of links within a

request path. In particular, this ratio provides a measure on the required level/complexity

to (re)establish a failover path. Overall, the results in Figure 4.7(a) shows that the failure

ratio follows the same pattern as that for the request failures, Figure 4.6. For example,

the MLL-ILP optimization scheme incurs slightly higher link failure ratios than the RA-ILP

scheme, i.e., 25%. However, non-survivable MLL-GR scheme introduces much higher failure

ratio than the RA-GR method, i.e., up to 75%.

Meanwhile, as noted earlier, the realistic stressor scenario shifts the location of the

actual outage event slightly west, as shown in Figure 4.4. As a result, 3 links are now failed,

ie., 12% of total. Overall, these results mirror the findings in Figure 4.6. For example,

Figure 4.8(a) compares the request failures for both of the ILP optimization schemes, and

shows that the risk-aware RA-ILP scheme is less effective in reducing failure rates over the
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MLL-ILP scheme. In particular, both schemes give almost identical outages here, with the

exception of a few batch sizes for which the RA-ILP performs slightly better, i.e., up to 15%.

These results show that the lack of accuracy in a-priori risk regions has a notable impact

on ILP-based survivability schemes. The corresponding results for the heuristic schemes in

Figure 4.8(b) also illustrate much closer failure rates between the non-survivable (MLL-GR)

and survivable (RA-GR) schemes. However, the risk-aware RA-GR scheme gives notably

better survivability, i.e., 23% less failures.

Finally, failure ratio (Eq. 4.11) results are also plotted in Figure 4.9. Unlike the

request failure rates, here some improvement is still observed with the “risk-aware” strategies.

frrn = flrn ∗ 100/totalrn (4.11)

Clearly, introducing failure risk information into the VNF placement and routing

process is very beneficial here, since deployment and routing costs have no considerable

variation when this model is adopted. However, the number of discontinued services and

links in a multi-failure scenario are considerably lower.
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(a)

(b)

Figure 4.5: a) deployment costs, and b) routing costs
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(a)

(b)

Figure 4.6: Requests assignment failures for the idealistic stressor scenario) RA-ILP and
MLL-ILP, and b) RA-GR and MLL-GR

67



www.manaraa.com

(a)

(b)

Figure 4.7: Link failure rates for the idealistic stressor scenario) RA-ILP and MLL-ILP, and
b) RA-GR and MLL-GR
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(a)

(b)

Figure 4.8: Requests assignment failures for the realistic stressor scenario a) RA-ILP and
MLL-ILP, and b) RA-GR and MLL-GR
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(a)

(b)

Figure 4.9: Link failure rates for the realistic stressor scenario a) RA-ILP and MLL-ILP, and
b) RA-GR and MLL-GR
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Chapter 5 Multi-Objective Metaheuristic Scheme for Large-Scale Networks 1

Overall, the (MLL-ILP) optimization scheme presented in Chapter 3 is quite effective

in addressing a range of NFV provisioning objectives for network operators. However as

noted previously, VNF provisioning is a NP-hard problem which poses increased computa-

tional complexity as the network size increases, i.e., intractable for larger realistic scenarios.

Moreover, this complexity is further exacerbated for the case of NFV survivability presented

Chapter 4. As a result, the RA-ILP optimization scheme may not significantly reduce request

blocking rates as compared to its non-survivable counterpart.

To address these concerns, this chapter presents a novel metaheuristic solution for

survivable VNF placement and routing. This scheme uses a genetic algorithm (GA) approach

to tackle larger network sizes and is termed as the risk-aware genetic algorithm (RA-GEN)

scheme [DO03][DO04]. Akin to the earlier-detailed optimization (RA-ILP) and heuristic

(RA-GR) methods, this GA-based approach also supports multiple provisioning objectives.

The proposed solution also tested and compared for a range of deployment scenarios.

5.1 Overview of Genetic Algorithm Metaheuristic

Before presenting the metaheuristic VNF provisioning scheme, it is instructive to

review the high-level nature of the GA search algorithm. In particular, this methodology
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is based upon the principle of natural selection/evolution, which states that living beings

will naturally evolve through a continual recombination and mutation of their chromosomes.

Namely, in the GA approach an individual represents an overall solution and is composed

of a set of chromosomes. Furthermore, each chromosome here represents a possible solution

to a given problem, i.e., value of variable(s). As a result, an associated fitness value is also

defined to measure how efficient its solution is. Finally a set of individuals is combined to

build a population in which the process of natural selection is applied [JM01].

A high-level view of the GA method is shown in Figure 5.1 and consists of a se-

ries of steps. Foremost, the solution starts by creating a population, P , composed of a set

of N individuals, i.e., n ∈ P (Initialize Population, Figure 5.1). Each individual here is

initialized by randomly creating and assigning values to its j chromosomes, where each chro-

mosome represents a possible specific solution, i.e., usually binary. Next, the fitness value

(Compute Fitness, Figure 5.1) is computed for each individual and if a satisfactory result

is found, this individual is selected as the best solution and the algorithm is terminated.

However, if the initially-created individuals in P do not efficiently solve the problem, new

individuals are further created. Specifically, two individuals (parents) are selected from the

original population (Select Parents, Figure 5.1) and a child individual is created and ini-

tialized by inheriting the parental chromosomes (Crossover, Figure 5.1). In particular, this

inheritance is controlled by a crossover rate which defines how many chromosomes should

be inherited from both the father and the mother. Furthermore, a mutation can also be
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generated (Mutation, Figure 5.1) based upon a mutation rate, which defines whether any

chromosomes values are changed or not. Accordingly, the fitness value is (re)computed for

each new child, and this process is repeated until a termination condition is reached, i.e.,

either in terms of the number of iterations, appropriate fitness values, etc. Carefully note

that due to the random nature of the GA approach, it is not possible to run the algorithm

until an global optimal solution is found (although it is possible to find such a solution here).

Figure 5.1: Genetic algorithm (GA) flow chart
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5.2 Genetic Algorithm Approach for NFV Provisioning

The GA approach is now applied to the survivable multi-objective VNF provisioning

problem, i.e., VNF placement, routing, load-balancing and link survivability. This meta-

heuristic scheme (RA-GEN) requires some specializations and adaptations to the generic

high-level GA solution outlined in Section 5.1. Full details are now presented.

5.2.1 Notation Overview

Before detailing the RA-GEN solution, the related notation and variables are first

defined. Overall, this framework re-uses the same notation from Chapter 3 to represent the

overall graph and input requests. Some additional variables are also introduced for GA,

operation and these are summarized in Table Table 5.1. Foremost, the overall population

set is defined by the set P and consists of pop size individuals. Furthermore, each individual

ind ∈ P has a set of chromosomes, where indr,i is the (r, i) chromosome addressing the

datacenter that instantiates function i requested by request r. The fitness function for an

individual is also given by FXind.

Now, with regards to the population, indoverall is defined as the best overall individual

across all populations, i.e., in terms of the fitness function. Similarly, indbest is defined as

the best individual in a given population. Meanwhile, the set of children generated by the

parents in a population P is given by C, and c ∈ C is an individual child. The first child

is also denoted by c0. Finally, T individuals (parents) are chosen from the main population

to generate the children, and this subset is given by Tc ⊆ P , i.e., |Tc|=|τ | ≤ |P |. The father
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(mother) of an individual is also given by cf (cm), see Table 5.1. Also, SPindr and SPcr

represent the shortest paths computed by individual indr ∈ P and c ∈ C, respectively, to

satisfy request r.

Table 5.1: List of variables

Variable Description
set P Population with N individuals, where P={1, 2, ..., n}
ind Individual, i.e., ind ∈ P
indr,i Individuals’ chromosome (r, i) addressing the datacenter that instantiates

function i requested by request r
d(indr,i) Datacenter d defined by individual ind to instantiate function i

requested by request r
SPindr Shortest path computed by individual ind to satisfy request r
FXind Fitness value of individual ind
indoverall Best overall individual across all populations
indbest Best individual in a given population P
C Child population generated from parent population P
c Child individual c ∈ C
c0 First individual c of a children population C
τ Tournament size

ratem Mutation rate
ratec Crossover rate
Tc Subset of τ individuals selected from parent population P (Tc ⊆ P )

to generated children
cf Father individual selected from Tc
cm Mother individual selected from Tc
SPcr Shortest path computed by individual c to satisfy request r

pop size Population size
Npop Number of children populations evaluated

5.2.2 “Risk-Aware” Genetic Algorithm (RA-GEN) Scheme

The overall pseudocode for the RA-GEN scheme is presented in Figure 5.2 and con-

sists of two key stages, i.e., initialization and selection. Here the first stage starts by ini-
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tializing all GA search variables (line 3, Figure 5.2) and generating an initial population of

randomly-selected individuals, P . Specifically, each individual randomly assigns datacenters

to instantiate each function i (requested by each request r) and also computes the short-

est path between the request source and destination nodes (lines 4-11, Figure 5.2). As a

result, each individual ind has |R| · |F | chromosomes, where |R| is the number of requests

and |F | is the number of functions per request. Furthermore, each individual chromosome

stores the datacenter being randomly assigned for function i requested by request r, and

it is assumed that this datacenter must be able to instantiate the specific function (line 7,

Figure 5.2). Finally, a connection path is also provisioned between the source and destina-

tion nodes by routing through all the datacenters supporting the (randomly mapped) VNFs.

Note that all path computation here is done using a “risk-aware” Dijkstra scheme, i.e.,

risk aware constrained Dijkstra, where link weights are computed based upon their failure

probability, ω(i, j), as follows:

c′ij =
∑

(i,j)∈E

(cij +
br
bij

) ∗ (1 + ω(i, j)) (5.1)

akin to Eq. 4.9, (Chapter 4). The fitness function value FXind is also computed for each ran-

domized individual, and the one with the highest value is chosen as the best solution (lines

12-13, Figure 5.2). After the initial population is complete, the second stage is launched to

perform selection. Namely, this phase iterates to generate and test a given number of child

populations (Npop in total). Now in order to ensure that the best solution from the parent

population P is included in the child population, the first child c0 is chosen as the best
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individual in P , i.e., c0 = indbest (line 16, Figure 5.2). The remaining individuals are then

created by inheritance, i.e., crossover and mutation (lines 17-22, Figure 5.2). In particular,

each child, c, is generated by running a tournament stage, where potential individuals “com-

pete” to become parents. Namely, a subset Tc of tournament size individuals is selected for

each child by randomly selecting τ individuals from population P (line 19, Figure 5.2). The

best and second best individuals from T are then chosen as the parents, i.e., father cf and

mother cm (lines 20-21, Figure 5.2). Next, the crossover rate, ratec, is used to weight the

chromosome inheritance between the two parents. For example, if the crossover rate is 20%,

then 80% of the chromosomes are inherited from the father and 20% from the mother (line

22, Figure 5.2). Finally, the child’s chromosomes are further mutated according to the muta-

tion rate ratem. Specifically, a random value is generated and compared with the mutation

rate, and if it is lower, then the chromosome is replaced by the total number of datacenters

D minus the current chromosome value cr,i. For example, consider a network composed of

16 datacenters, with a chromosome assigning datacenter 5 to instantiate a specific function.

If this particular chromosome is selected for mutation, then its value is modified (16-5), i.e.,

changed to 11. In order to ensure the new datacenter has enough resources, after inheritance

and mutation are complete, the algorithm must also check to make sure that this newly-

assigned datacenter (chromosome value) can instantiate function i requested by request r,

otherwise these steps are repeated.
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Finally, each child individual, c, computes the “risk-aware” shortest path SPcr for

each request r (line 25, Figure 5.2). The overall fitness value FXc is then evaluated for each

child individual c (line 26, Figure 5.2), and akin to the parent population stage, the best

individual, indbest, from the child population C is selected (line 27, Figure 5.2). Finally, the

best overall individual is then selected across all (Npop) iterations as the final VNF mapping

and routing selection. Namely, this selection is done by comparing the best individual in

each child population iteration, indbest, versus the currently known best overall individual,

indoverall. If the former is better (higher fitness value) than the latter, the best child individual

is appropriately updated.

Overall, the second stage (lines 15-31, Figure 5.2) generates and evaluates a number

(Npop) of child populations which are created by inheriting chromosomes from their respec-

tive parents. Note that each child population may not be derived from the best individuals

in the parent population. However the child individuals still improve upon each iteration

since the their parents are efficiently selected during the tournament stage. In summary, the

best overall individual, indoverall, returns the complete VNF demand mapping and its set of

routes, i.e., including each datacenter d instantiating function i (requested by request r), the

number of instances yid of function i in datacenter d, the links lij routing the paths and the

maximum overall link load α.
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5.3 Performance Evaluation

The proposed RA-GEN metaheuristic scheme is evaluated using the same infras-

tructure topology and probabilistic stressor regions as shown in Figure 4.3. All testcase

parameters are presented in Table 5.2 (same as those in Table 4.2), and the parameter set-

tings for the RA-GEN scheme are also given in Table 5.3. In particular, GA selection is done

over 100 populations, with each having 20 individuals and crossover/mutation rates of 20%.

Overall, the goal here is to compare the RA-GEN metaheuristic solution with the methods

presented in Chapter 4, i.e., RA-ILP and RA-GR schemes. Hence the same testcases used

in Chapter 4 are also adopted here, i.e., idealistic and realistic stressor scenarios.

Table 5.2: Multi-failure testcases parameters

Parameter Idealistic Scenario Realistic Scenario
Link Resources 10,000 10,000

Node Resources (wd,1,wd,2,wd,3) 5, 000 5, 000
Weight w1 1, 000
Weights w2 1
Weights w3 1
Weights w4 1, 000
Function set f0, f1, f2, f3, f4

Required Resources (wi
d,j) 30 ≤ wi

d,j ≤ 70

Function Setup Cost 50
Instance Capacity 2
Link Setup Cost 20

Outage Event u1 Modified u1
Outage Links (1, 5), (2, 4), (2, 5), l(5, 7) (4, 11), (5, 7), (7, 12)

79



www.manaraa.com

Table 5.3: GA-related parameters (RA-GEN scheme)

Variable Description Value
pop size Population size 20
loop Number of iterations 100
τ Tournament Size 4

crossover Crossover rate 20%
mutation Mutation rate 20%

5.3.1 Pre-Fault Performance

Akin to Section 4.3.1, initial tests are done to commensurate and compare the pre-

failure provisioning costs of the metaheuristic RA-GEN scheme. Namely, varying incoming

batch sizes (with 1-60 requests) are tested here, with each request demanding 4 NFs. Overall,

Figure 5.3(a) plots the results for setup (deployment) costs, and these findings show relatively

close performance between all three schemes. However, the associated routing costs are also

plotted in Figure 5.3(b) and indicate that the GA-based metaheuristic gives notably better

performance than the greedy heuristic, i.e., 50% lower routing costs across all batch sizes.

Nevertheless, the RA-ILP optimization model still outperforms the RA-GEN scheme here,

reducing routing costs by up to 35%.

5.3.2 Post-Fault Performance

To further gauge the impact of multiple link failures, the post-fault performance

of all “risk-aware” schemes is also evaluated. Akin to Section 4.3, two different testcases

are evaluated here i.e., idealistic and realistic stressors scenarios. As per Table 5.3, the

former testcase selects the u1 region and fails 4 links here (l1,5, l2,4, l2,5, l5,7). Accordingly,
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Figure 5.4(a) plots the number of failed requests for the ideal stressor and indicates the

higherst amount of failures with the greedy RA-GR scheme. By contrast, the RA-GEN

method is very competitive with the RA-ILP optimization scheme here, i.e., generally within

20% of the number of failures in for most batch sizes. In fact, the metaheuristic solution

even gives lower failures for some batch sizes, i.e., 4, 7, 16, 37, 46 and 55 requests.

Meanwhile the realistic stressor testcase selects the u1w region (Figure 4.4) and fails

3 links (l4,11, l5,7 and l7,12). The related post-fault failure results are plotted in Figure 5.4(b)

and indicate that the RA-GEN metaheuristic actually gives improved survivability than both

of the other RA-ILP and RA-GR schemes. Most notably, failed requests are up to 20% lower

than the optimization scheme, a very notable result.
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1: INPUT (Network infrastructure and demands): G(V, E), cij , ω(i, j)∀(i, j) ∈ E,R, F,D
2: OUTPUT: xir,d, y

i
d, l

ij
r and SPcr values from best overall individual indoverall

3: set indoverall = MAX V ALUE, xir,d = 0, yid = 0, lijr = 0 for all r ∈ R, i ∈ Fr, d ∈ D, (i, j) ∈ E
{BEGINNING OF INITIALIZATION STAGE}

4: for all ind ∈ P
5: for all r ∈ R
6: for all i ∈ Fr

7: indr,i =random identification of a datacenter that implements i and has enough re-
sources to serve an additional request

8: update resources of d(indr,i)
9: update yid(indr,i)

10: set xir,d(indr,i) = 1

11: SPindr = risk aware constrained Dijkstra(srcr, dstr)
12: compute(FXind)
{END OF INITIALIZATION STAGE}
{BEGINNING OF SELECTION STAGE}

13: indoverall =best ind ∈ P
14: indbest =best ind ∈ P
15: for loop ≤ Npop
16: C = P
17: c0 = indbest
18: for all c ∈ C
19: Tc=randomly pick τ individuals ind ∈ P
20: cf =best Tc
21: cm =second best Tc
22: c = crossover(cf , cm)
23: c = mutation(c)
24: for all r ∈ R
25: SPcr = risk aware constrained Dijkstra(srcr, dstr)
26: compute(FXc)
27: indbest =best c ∈ C
28: P = C

{Select best individual across all iterations and populations}
29: if indbest < indoverall
30: indoverall=indbest
31: loop = loop+ 1
{END OF SELECTION STAGE}

32: return NF mappings, NF instances in each datacenter, links within a path

Figure 5.2: RA-GEN metaheuristic algorithm
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(a)

(b)

Figure 5.3: a) deployment costs, and b) routing costs
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(a)

(b)

Figure 5.4: Requests assignment failures for the a) idealistic stressor scenario, and b) realistic
stressor scenario

84



www.manaraa.com

Chapter 6 Conclusions and Future Work

This dissertation research focuses on the study of network function virtualization

(NFV) provisioning and presents a detailed study of survivable multi-objective virtual net-

work function (VNF) placement/mapping and routing schemes. First, Chapter 2 presents

an overview of the NFV paradigm along with a survey of related work on VNF placement

and routing, i.e., including studies on both single and multi-failure scenarios. Subsequently

Chapter 3 presents an integer linear programming (ILP) optimization model for the efficient

multi-objective provisioning in NFV infrastructures. This solution implements both virtual

function placement and routing, and a further greedy heuristic method is also proposed for

comparison purposes. Both of these solutions are used to verify the importance of traffic

engineering (TE) load-balancing in (physical) resource-limited scenarios. Next, Chapter 4

extends these optimization and heuristic schemes to further implement “risk-aware” NFV

provisioning in multi-failure scenarios. However, VNF placement and routing is a NP-hard

problem, and associated optimization schemes can become intractable for a large number

of variables. Therefore, Chapter 5 also introduces a more scalable metaheuristic genetic

algorithm (GA) approach.
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6.1 Summary of Research Findings

This dissertation starts out by looking at the problem of VNF placement and routing

in NFV infrastructures. To date most related studies have assumed unlimited amounts

of physical resources at the infrastructure layer, and only focused on single provisioning

objectives. However, clearly these assumptions are not realistic for all operational scenarios.

Also to the best of the author’s knowledge, there is no known work on multi-objective VNF

provisioning.

In light of the above, Chapter 3 introduces a novel ILP optimization solution to jointly

maximize the number of satisfied requests, minimize deployment cost, minimize routing

cost and implement load-balancing, i.e., termed as the minimized link load ILP (MLL-

ILP) scheme. In particular, a weighting factor is used in the objective function to allow

service providers to tune their service to meet difficult provisioning objective. Additionally,

a more scalable polynomial-time greedy heuristic scheme is also proposed, i.e., termed as

the minimized link load greedy heuristic (MLL-GR) scheme. Although both solutions use

the same objective function, the heuristic method is sub-optimal and does not perform as

well. Finally, these two methods are compared against each other and also with standardized

ILP optimization and greedy heuristic schemes that do not implement any load-balancing

support, i.e., termed as joint routing and placement ILP (JRP-ILP) and joint routing and

placement greedy heuristic (JRP-GR). The overall results indicate that:
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• The load-balancing factor plays a crucial role in maximizing the number of accepted

requests in resource-constrained settings. In particular, results show that the multi-

objective MLL-ILP and MLL-GR schemes can provision all input batch request sizes

for the evaluated scenarios, whereas the JRP-ILP and JRP-GR schemes experience

blocking for some instances.

• All schemes give very similar deployment costs. However the MLL-ILP optimization

method achieves notably lower routing costs as compared to the JRP-ILP solution

which does not implement load-balancing, i.e., by approximately 20%.

• The proposed MLL-ILP optimization solution also gives much lower routing costs as

compared to its greedy heuristic counterpart (MLL-GR) scheme, i.e., by up to 50%.

This reduction is due to improved, globalized VNF placement and path selection.

Furthermore, survivability/reliability is also fast becoming a major concern for NFV-based

services. Now as noted in the survey in Chapter 2, some studies have addressed related

concerns, albeit only for single node or link failures. Indeed, none of these efforts have

considered more advanced “risk-aware” techniques to proactively handle large-scale disaster

events, i.e., a-priori protection. In light of the above, Chapter 4 proposes two further surviv-

able “risk-aware” multi-objective provisioning schemes for NFV infrastructures. Specifically,

the objective function from Chapter 3 is updated to incorporate probabilistic stressor events,

and the optimization-based MLL-ILP and heuristic-based MLL-GR solutions are expanded

to build two “risk-aware” schemes, i.e., termed as “risk-aware” ILP (RA-ILP) and “risk-
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aware” greedy heuristic (RA-GR). The performance of these solutions is then evaluated,

both in terms of pre-fault provisioning efficiency and post-fault restoration/recovery. In par-

ticular, the latter tests evaluate two stressor scenarios, idealistic and realistic. The former

triggers a large failure region which exactly matches a predefined (a-priori) stressor, whereas

the latter generates a unique stressor footprint which differs from the pre-specified stressor

events. The overall results show:

• “Risk-aware” provisioning can generate longer connection paths since links with higher

failure probability increase routing cost. As a result, the RA-ILP and RA-GR schemes

yield higher routing costs as compared to their non-survivable counterparts, i.e., MLL-

ILP and MLL-GR.

• For the case of exactly matching failure events (idealistic stressor scenario), the “risk-

aware” schemes give a fewer of post-fault demand failure as compared to their non-

survivable counterparts, i.e., up to 15% and 25% for the optimization and heuristic

schemes, respectively.

• For the case of non-matching failed links (realistic stressor scenario), the “risk-aware”

schemes still outperform their non-survivable counterparts. For example, the heuristic

RA-GR scheme gives up to 25% less post-failure demand failures as compared to the

MLL-GR solution. However, the relative improvement with the optimization-based

RA-ILP scheme is lower owing to discrepances. between the predicted (modeled) and

actual failures.
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Overall, ILP-based optimization solutions can deliver lower costs versus sub-optimal greedy

heuristic methods. However, the computational times for ILP solvers can become intractable

as the network complexity increases. As a result, there is a further need to develop more

scalable solutions that can also deliver good performance. Along these lines, a novel meta-

heuristic genetic algorithm scheme for multi-objective NFV provisioning and survivability

is also proposed in Chapter 4, i.e., termed as “risk-aware” genetic algorithm (RA-GEN)

scheme. This solution is further evaluated against its counterpart optimization and heuristic

schemes in Chapter 4 (RA-ILP, RA-GR schemes). Overall findings indicate:

• Deployment costs are very similar across all three schemes. However, the RA-ILP

solution gives substantially lower routing costs than the heuristic and metaheuristic

models.

• For the case of exactly-matching failure events (idealistic stressor scenarios), the RA-

GEN scheme gives slightly lower post-fault demand failures then the RA-ILP scheme

in a few batch request sizes. Moreover, this solution can also scale to handle larger

networks.

• For the case of non-matching failure events (realistic stressor scenario), the RA-GEN

scheme yields substantially fewer post-fault demand failures, i.e., increased reliability

versus the RA-ILP scheme, i.e., up to 20% less failures.

In conclusion, this dissertation proposes and analyzes a range multi-objective provisioning

schemes for NFV infrastructures. This is an open area with little/no existing work to date.
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Most notably, three survivable “risk-aware” schemes are proposed and compared, based

upon optimization, heuristic and metaheuristic methodologies, i.e., RA-ILP, RA-GR and

RA-GEN schemes. Results show that the RA-ILP optimization scheme gives lower costs

(better performance), i.e., particularly routing costs. However, the RA-GEN metaheuristic

has much lower computational-complexity and also provides a higher level of survivability,

especially for realistic stressor scenarios.

6.1.1 Future Work

To the best of the author’s knowledge, this work presents the first solution for multi-

failure NFV provisioning. As such, it provides a very solid basis to conduct further ex-

ploratory research. In particular, new efforts can look at developing post-fault restoration

schemes to further improve VNF recovery performance. Further research can also extend the

survivability schemes to consider service function chaining (SFCs requests). Namely, virtual

services will usually be associated with a sequence of VNFs, which must be maintained af-

ter failure events. Finally, there is a pressing need to address performance analysis during

services migration/redeployment post-failures, i.e., disaster recovery and redeployment.
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Appendix A: Glossary

BIP Binary Integer Linear Program

COTS Commercial-Off-The-Shelf

DPI Deep Packet Inspection

ETSI European Telecommunications Standards Institute

GA Genetic Algorithm

IDS Intrusion Detection System

ILP Integer Linear Program

INLP Integer Non-Linear Program

IPS Intrusion Prevention System

ISG Industry Specification Group

JRP-GR Joint Routing and Placement Greedy Heuristic

JRP-ILP Joint Routing and Placement ILP

MILP Mixed Integer Linear Program

MIQCP Mixed Integer Quadratically Constrained Program

MLL-GR Minimized Link Load Greedy Heuristic

MLL-ILP Minimized Link Load ILP

NAT Network Address Translation

NFV Network Function Virtualization

RA-GEN Risk-aware Genetic Algorithm
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RA-GR Risk-Aware Greedy Heuristic

RA-ILP Risk-aware ILP

SDN Software-Defined Networking

SDNFV Software-Defined Network Function Virtualization

SFC Service Function Chaining

SP Shortest Path

SRLG Share Risk Link Group

SRRG Share Risk Resource Group

VNE Virtual Network Embedding

VNF Virtual Network Function

VNF-FG Virtual Network Function Forwarding Graph

WG Working Group
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